metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,3-Dimethylquinoxalinediium hexabromidostannate(IV) trihydrate

Basem Fares Ali,^a* Rawhi Al-Far^b and Seik Weng Ng^c

^aDepartment of Chemistry, Al al-Bayt University, Mafraq 25113, Jordan, ^bFaculty of Science and IT, Al-Balqa'a Applied University, Salt, Jordan, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: bfali@aabu.edu.jo

Received 20 June 2007; accepted 5 July 2007

Key indicators: single-crystal X-ray study; T = 84 K; mean σ (C–C) = 0.013 Å; R factor = 0.062; wR factor = 0.132; data-to-parameter ratio = 23.0.

In the title compound, $(C_{10}H_{12}N_2)[SnBr_6]\cdot 3H_2O$, the asymmetric unit contains one cation, one anion and three water molecules, and the Sn atom has a distorted octahedral environment. In the crystal structure, intra- and intermolecular hydrogen bonds and $Br\cdots Br$ interactions $[Br\cdots Br = 3.6726 (19), 3.6913 (18) and 3.6517 (21) Å]$ lead to the formation of a supramolecular architecture.

Related literature

For related literature, see: Desiraju (1997); Ali *et al.* (2007); Ali & Al-Far (2007); Al-Far & Ali (2007a,b); Al-Far *et al.* (2007); Tudela & Khan (1991); Willey *et al.* (1998). For bondlength data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} ({\rm C}_{10}{\rm H}_{12}{\rm N}_2)[{\rm SnBr_6}]\cdot {\rm 3H_2O}\\ M_r = 812.37\\ {\rm Monoclinic}, P_{2,1}/c\\ a = 9.898\ (3)\ {\rm \AA}\\ b = 13.620\ (5)\ {\rm \AA}\\ c = 16.098\ (6)\ {\rm \AA}\\ \beta = 103.599\ (6)^{\circ} \end{array}$

Data collection

Rigaku Mercury CCD diffractometer $V = 2109.3 (13) Å^{3}$ Z = 4 Mo K\alpha radiation \mu = 12.59 mm⁻¹ T = 84 (2) K 0.30 \times 0.20 \times 0.10 mm

Absorption correction: multi-scan (CrystalClear; Rigaku, 2000) $T_{min} = 0.055, T_{max} = 0.277$ 27021 measured reflections 4633 independent reflections

Refinement

201 parameters
H-atom parameters constrained
$\Delta \rho_{\rm max} = 1.41 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -1.11 \text{ e \AA}^{-3}$

4210 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.045$

Table 1

Selected geometric parameters (Å, °).

Sn1-Br1	2.4405 (12)	Sn1-Br6	2.6570 (12)
Sn1-Br3	2.4603 (12)	Sn1-Br5	2.7026 (12)
Sn1-Br4	2.6534 (11)	Sn1-Br2	2.7114 (11)
Br1-Sn1-Br3	177.29 (4)	Br4-Sn1-Br5	85.87 (4)
Br1-Sn1-Br4	93.48 (4)	Br6-Sn1-Br5	178.17 (3)
Br3-Sn1-Br4	88.41 (4)	Br1-Sn1-Br2	87.41 (4)
Br1-Sn1-Br6	86.37 (4)	Br3-Sn1-Br2	90.69 (4)
Br3-Sn1-Br6	95.38 (4)	Br4-Sn1-Br2	179.08 (4)
Br4-Sn1-Br6	95.87 (4)	Br6-Sn1-Br2	84.41 (4)
Br1-Sn1-Br5	92.93 (3)	Br5-Sn1-Br2	93.86 (4)
Br3-Sn1-Br5	85.26 (4)		

Table 2

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O1W - H1W1 \cdots O2W$	0.86	1.78	2.640 (14)	170.00
$O1W - H1W2 \cdot \cdot \cdot Br3^{i}$	0.87	2.79	3.348 (9)	123.1 (5)
O2W−H2W1···Br2 ⁱⁱ	0.84	2.57	3.401 (12)	167.4 (7)
O2W−H2W2···Br3 ⁱⁱ	0.87	2.83	3.482 (11)	132.9 (7)
O3W−H3W2···Br1	0.86	2.83	3.349 (11)	120.00
$N1 - H1N \cdots O1W$	0.86	1.82	2.672 (10)	172
$N2 - H2N \cdot \cdot \cdot O3W^{iii}$	0.86	1.81	2.660 (11)	172
Symmetry codes: (i) $x, -y + \frac{3}{2}, z + \frac{1}{2}$.	x - 1, -y +	$-\frac{3}{2}, z + \frac{1}{2};$ (ii) $-x+2, y-\frac{1}{2}$	$, -z + \frac{1}{2};$ (iii)

Data collection: *CrystalClear* (Rigaku, 2000); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997*a*); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997*a*); molecular graphics: *SHELXTL* (Sheldrick, 1997*b*); software used to prepare material for publication: *SHELXTL*.

Al al-Bayt University and Al-Balqa'a Applied University are thanked for their support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2278).

References

Al-Far, R. & Ali, B. F. (2007a). Acta Cryst. C63, m137-m139.
Al-Far, R. & Ali, B. F. (2007b). Acta Cryst. E63, o2530-o2532.
Al-Far, R., Ali, B. F. & Al-Sou'od, K. (2007). J. Chem. Cryst. 37, 265-273.
Ali, B. F. & Al-Far, R. (2007). Acta Cryst. E63, m892-m894.
Ali, B. F., Al-Far, R. & Haddad, S. (2007). Acta Cryst. E63, m1569.
Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
Desiraju, G. R. (1997). Chem. Commun. pp. 1475-1482.
Rigaku (2000). CrystalClear. Rigaku Corporation, Tokyo, Japan.

- Sheldrick, G. M. (1997a). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (1997b). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.

Tudela, D. & Khan, M. A. (1991). J. Chem. Soc. Dalton Trans. pp. 1003– 1006.

Willey, G. R., Woodman, T. J., Somasundaram, U., Aris, D. R. & Errington, W. (1998). J. Chem. Soc. Dalton Trans. pp. 2573–2576.

Acta Cryst. (2007). E63, m2102-m2103 [doi:10.1107/S1600536807032771]

2,3-Dimethylquinoxalinediium hexabromidostannate(IV) trihydrate

B. F. Ali, R. Al-Far and S. W. Ng

Comment

Noncovalent interactions play an important role in organizing structural units in both natural and artificial systems (Desiraju, 1997). In connection with ongoing studies (Ali *et al.*, 2007; Ali & Al-Far, 2007; Al-Far & Ali, 2007*a*,b) of the structural aspects of bromo metal anions salts, we herein report the crystal structure of the title compound, (I).

The asymmetric unit of the title compound, (I), contains one cation, one anion and three water molecules, where the Sn atom has a distorted octahedral environment (Fig. 1, Table 1). The bond lengths and angles (Table 1) are generally within normal ranges (Allen *et al.*, 1987). In the anion, the Sn1—Br1 [2.4406 (12) Å] and Sn1—Br3 [2.4605 (12) Å] bonds are shorter than the other Sn—Br bonds, in which they are within the range of Sn—Br bonds reported previously for compounds containing $[SnBr_6]^{2-}$ anions (Ali & Al-Far, 2007; Al-Far & Ali, 2007*a*,b; Al-Far *et al.*, 2007; Tudela & Khan, 1991; Willey *et al.*, 1998). In the cation, the bond lengths and angles are in accordance with the corresponding values (Al-Far & Ali, 2007*a*,b; Ali *et al.*, 2007). The cation is, of course, planar, in which C1 and C10 atoms are also coplanar.

The packing of the structure can be regarded as alternating layers of anions and cations (Fig. 2). The anions within each layer (Fig. 3) interact *via* Br1···Br3^{iv} = 3.6726 (19) Å [symmetry code: (iv) x, 3/2 + y, 1/2 + z] interactions parallel to c axis. Each anionic layer further interacts *via* Br2···Br6^v = 3.6913 (18) Å [symmetry code: (v) -x + 3, 1/2 + y, 1/2 - z] and Br4···Br4^{vi} = 3.6517 (21) Å [symmetry code: (vi) -x + 2, -y + 1, -z] interactions to form a two-dimensional anionic network parallel to *ac* plane (Fig. 3).

The crystal supramolecularity is represented in the significantly short hydrogen bonds (Table 2, Fig. 4) along with Br…Br interactions that allow the formation of supramolecular assembly of the anion, cation and water molecules in three-dimensional structure, in which they may be effective in the stabilization of the crystal structure.

Experimental

For the preparation of (I), tin metal (0.119 mg, 1 mmol) dissolved in absolute ethanol (10 ml), HBr (60%, 5 ml) and liquid Br_2 (60%, 2 ml), was added dropwise to a stirred hot solution of 2,3-dimethylquinoxalinium (0.158 mg, 1 mmol) dissolved in ethanol (10 ml) and HBr (60%, 2 ml). After refluxing for 1 h, the mixture was filtered off, and then allowed to stand undisturbed at room temperature. The salt crystallized over 1 d as yellow crystals. Crystals were filtered off, washed with diethylether and dried under vacuum (yield; 0.750 mg; 92.4%).

Refinement

H atoms were positioned geometrically, with O—H = 0.84–0.90 Å (for H₂O), N—H = 0.86 Å (for NH) and C—H = 0.95 and 0.98 Å, for aromatic and methylene H atoms, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,O,N)$, where x = 1.2 for NH and aromatic H atoms, and x = 1.5 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Hydrogen bonds are shown as dashed lines.

Fi as iv

Fig. 2. A partial packing diagram of (I). Hydrogen bonds and Br \cdots Br interactions are shown as dashed lines. Viewed down *c* axis, where a and b axes are horizontal and vertical, respectively.

Fig. 3. Anion network of Br...Br interactions. Viewed down *b* axis, where c and a axes are horizontal and vertical, respectively [Symmetry codes: (iv) x, 3/2 + y, 1/2 + z; (v) -x + 3, 1/2 + y, 1/2 - z; (vi) -x + 2, -y + 1, -z].

Fig. 4. Anion, cation and water molecules intermolecular interactions. Sn—Br···H—O, H_2O ···H—OH, H_2O ···H—N and Br···Br (parallel to *c* axis) intermolecular interactions are shown as dashed lines. Viewed down *b* axis, where *c* and a axes are horizontal and vertical, respectively. H atoms are omitted for clarity. Oxygen atoms of water molecules shown as balls.

'2,3-Dimethylquinoxalinediium hexabromostannate(IV) trihydrate'

Crystal data	
$(C_{10}H_{12}N_2)[SnBr_6]$ ·3H ₂ O	$F_{000} = 1504$
$M_r = 812.37$	$D_{\rm x} = 2.558 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71070$ Å
Hall symbol: -P 2ybc	Cell parameters from 4210 reflections
a = 9.898 (3) Å	$\theta = 1.3 - 27.9^{\circ}$
b = 13.620 (5) Å	$\mu = 12.59 \text{ mm}^{-1}$
c = 16.098 (6) Å	T = 84 (2) K
$\beta = 103.599 \ (6)^{\circ}$	Needle, yellow
$V = 2109.3 (13) \text{ Å}^3$	$0.30\times0.20\times0.10~mm$
Z = 4	

Data collection

Rigaku Mercury CCD diffractometer	4633 independent reflections
Radiation source: fine-focus sealed tube	4210 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.045$
Detector resolution: 14.6306 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}$
T = 84(2) K	$\theta_{\min} = 2.1^{\circ}$

dtintegrate.ref scans	$h = -12 \rightarrow 11$
Absorption correction: multi-scan Shape Tracing Software	$k = -17 \rightarrow 17$
$T_{\min} = 0.055, \ T_{\max} = 0.277$	$l = -20 \rightarrow 20$
27021 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.062$	H-atom parameters constrained
$wR(F^2) = 0.132$	$w = 1/[\sigma^2(F_o^2) + (0.0478P)^2 + 7.030P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.20	$(\Delta/\sigma)_{\rm max} = 0.001$
4633 reflections	$\Delta \rho_{max} = 1.41 \text{ e } \text{\AA}^{-3}$
201 parameters	$\Delta \rho_{\rm min} = -1.11 \ e \ {\rm \AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Sn1	1.23031 (5)	0.73783 (4)	0.15141 (3)	0.03598 (16)
Br1	1.17497 (9)	0.68693 (8)	0.28495 (5)	0.0562 (3)
Br2	1.41637 (10)	0.86480 (7)	0.24513 (6)	0.0600 (3)
Br3	1.28560 (9)	0.79729 (8)	0.01892 (5)	0.0594 (3)
Br4	1.04854 (9)	0.61509 (7)	0.05744 (6)	0.0573 (3)
Br5	1.02270 (9)	0.87143 (7)	0.11762 (6)	0.0538 (2)
Br6	1.43853 (9)	0.60996 (7)	0.18886 (6)	0.0529 (2)
O1W	0.5390 (9)	0.6748 (7)	0.4150 (5)	0.099 (3)
H1W1	0.5917	0.6271	0.4063	0.149*
H1W2	0.4568	0.6502	0.4107	0.149*
O2W	0.7208 (12)	0.5361 (8)	0.4048 (8)	0.150 (5)
H2W1	0.6941	0.4985	0.3624	0.226*
H2W2	0.7408	0.5002	0.4510	0.226*

O3W	0.9249 (12)	0.6547 (9)	0.3909 (5)	0.134 (4)
H3W1	0.9395	0.7059	0.4277	0.201*
H3W2	1.0060	0.6290	0.3961	0.201*
N1	0.6611 (6)	0.7296 (5)	0.5744 (4)	0.0432 (15)
H1N	0.6144	0.7109	0.5249	0.052*
N2	0.8084 (7)	0.7870 (5)	0.7326 (4)	0.0457 (16)
H2N	0.8534	0.8050	0.7827	0.055*
C1	0.6530 (10)	0.5601 (7)	0.6141 (7)	0.067 (3)
H1A	0.5879	0.5584	0.5579	0.101*
H1B	0.6076	0.5337	0.6572	0.101*
H1C	0.7349	0.5202	0.6126	0.101*
C2	0.6965 (8)	0.6629 (7)	0.6361 (6)	0.049 (2)
C3	0.6962 (7)	0.8271 (6)	0.5865 (5)	0.0399 (17)
C4	0.6556 (9)	0.8934 (7)	0.5197 (5)	0.050(2)
H4	0.6045	0.8736	0.4646	0.060*
C5	0.6936 (10)	0.9891 (8)	0.5380 (7)	0.063 (3)
Н5	0.6690	1.0367	0.4939	0.075*
C6	0.7682 (10)	1.0201 (7)	0.6201 (8)	0.067 (3)
H6	0.7899	1.0878	0.6289	0.080*
C8	0.7744 (7)	0.8569 (6)	0.6704 (5)	0.0399 (17)
C7	0.8110 (9)	0.9554 (7)	0.6884 (6)	0.055 (2)
H7	0.8613	0.9766	0.7432	0.066*
C9	0.7761 (8)	0.6942 (6)	0.7202 (5)	0.0453 (19)
C10	0.8231 (11)	0.6235 (8)	0.7927 (6)	0.073 (3)
H10A	0.7928	0.6469	0.8429	0.109*
H10B	0.9248	0.6186	0.8064	0.109*
H10C	0.7826	0.5587	0.7761	0.109*

Atomic displacement parameters (\AA^2)

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0316 (3)	0.0490 (3)	0.0301 (3)	-0.0024 (2)	0.0128 (2)	-0.0062 (2)
0.0512 (5)	0.0851 (7)	0.0392 (4)	0.0018 (4)	0.0247 (4)	0.0052 (4)
0.0516 (5)	0.0684 (6)	0.0626 (6)	-0.0193 (4)	0.0188 (4)	-0.0240 (5)
0.0540 (5)	0.0901 (7)	0.0412 (4)	-0.0031 (5)	0.0252 (4)	0.0099 (4)
0.0517 (5)	0.0687 (6)	0.0546 (5)	-0.0196 (4)	0.0184 (4)	-0.0223 (4)
0.0447 (5)	0.0622 (5)	0.0588 (5)	0.0063 (4)	0.0210 (4)	-0.0041 (4)
0.0473 (5)	0.0622 (5)	0.0540 (5)	0.0130 (4)	0.0217 (4)	0.0009 (4)
0.106 (6)	0.134 (7)	0.054 (4)	0.010 (6)	0.013 (4)	-0.019 (5)
0.175 (11)	0.107 (8)	0.209 (13)	-0.005 (7)	0.123 (10)	-0.016 (8)
0.151 (9)	0.206 (11)	0.043 (4)	0.017 (8)	0.016 (5)	0.017 (6)
0.035 (3)	0.056 (4)	0.040 (3)	0.003 (3)	0.011 (3)	-0.004 (3)
0.038 (4)	0.070 (5)	0.032 (3)	0.001 (3)	0.013 (3)	0.000 (3)
0.059 (6)	0.056 (6)	0.094 (8)	-0.003 (5)	0.030 (5)	-0.005 (5)
0.031 (4)	0.059 (5)	0.059 (5)	-0.001 (4)	0.016 (4)	0.011 (4)
0.032 (4)	0.049 (4)	0.045 (4)	0.004 (3)	0.021 (3)	0.002 (4)
0.046 (5)	0.065 (6)	0.042 (4)	0.007 (4)	0.017 (4)	0.012 (4)
0.054 (6)	0.071 (7)	0.070 (6)	0.013 (5)	0.030 (5)	0.023 (5)
	U^{11} 0.0316 (3) 0.0512 (5) 0.0516 (5) 0.0540 (5) 0.0517 (5) 0.0447 (5) 0.0447 (5) 0.106 (6) 0.175 (11) 0.151 (9) 0.035 (3) 0.038 (4) 0.059 (6) 0.031 (4) 0.032 (4) 0.046 (5) 0.054 (6)	U^{11} U^{22} $0.0316(3)$ $0.0490(3)$ $0.0512(5)$ $0.0851(7)$ $0.0516(5)$ $0.0684(6)$ $0.0540(5)$ $0.0901(7)$ $0.0517(5)$ $0.0687(6)$ $0.0447(5)$ $0.0622(5)$ $0.0473(5)$ $0.0622(5)$ $0.106(6)$ $0.134(7)$ $0.151(9)$ $0.206(11)$ $0.035(3)$ $0.056(4)$ $0.038(4)$ $0.070(5)$ $0.059(6)$ $0.056(6)$ $0.031(4)$ $0.059(5)$ $0.046(5)$ $0.071(7)$	U^{11} U^{22} U^{33} $0.0316(3)$ $0.0490(3)$ $0.0301(3)$ $0.0512(5)$ $0.0851(7)$ $0.0392(4)$ $0.0516(5)$ $0.0684(6)$ $0.0626(6)$ $0.0540(5)$ $0.0901(7)$ $0.0412(4)$ $0.0517(5)$ $0.0687(6)$ $0.0546(5)$ $0.0447(5)$ $0.0622(5)$ $0.0540(5)$ $0.0473(5)$ $0.0622(5)$ $0.0540(5)$ $0.106(6)$ $0.134(7)$ $0.054(4)$ $0.175(11)$ $0.107(8)$ $0.209(13)$ $0.151(9)$ $0.206(11)$ $0.043(4)$ $0.035(3)$ $0.056(4)$ $0.040(3)$ $0.038(4)$ $0.070(5)$ $0.032(3)$ $0.059(6)$ $0.056(6)$ $0.094(8)$ $0.031(4)$ $0.049(4)$ $0.045(4)$ $0.046(5)$ $0.065(6)$ $0.042(4)$ $0.046(5)$ $0.065(6)$ $0.070(6)$	U^{11} U^{22} U^{33} U^{12} $0.0316(3)$ $0.0490(3)$ $0.0301(3)$ $-0.0024(2)$ $0.0512(5)$ $0.0851(7)$ $0.0392(4)$ $0.0018(4)$ $0.0516(5)$ $0.0684(6)$ $0.0626(6)$ $-0.0193(4)$ $0.0540(5)$ $0.0901(7)$ $0.0412(4)$ $-0.0031(5)$ $0.0517(5)$ $0.0687(6)$ $0.0546(5)$ $-0.0196(4)$ $0.0447(5)$ $0.0622(5)$ $0.0588(5)$ $0.0063(4)$ $0.0473(5)$ $0.0622(5)$ $0.0540(5)$ $0.0130(4)$ $0.106(6)$ $0.134(7)$ $0.054(4)$ $0.010(6)$ $0.175(11)$ $0.107(8)$ $0.209(13)$ $-0.005(7)$ $0.151(9)$ $0.206(11)$ $0.043(4)$ $0.017(8)$ $0.035(3)$ $0.056(4)$ $0.040(3)$ $0.003(3)$ $0.038(4)$ $0.070(5)$ $0.032(3)$ $0.001(3)$ $0.059(6)$ $0.056(6)$ $0.094(8)$ $-0.003(5)$ $0.031(4)$ $0.059(5)$ $-0.001(4)$ $0.032(4)$ $0.049(4)$ $0.045(4)$ $0.004(3)$ $0.046(5)$ $0.065(6)$ $0.042(4)$ $0.007(4)$ $0.054(6)$ $0.071(7)$ $0.070(6)$ $0.013(5)$	U^{11} U^{22} U^{33} U^{12} U^{13} 0.0316 (3)0.0490 (3)0.0301 (3) -0.0024 (2)0.0128 (2)0.0512 (5)0.0851 (7)0.0392 (4)0.0018 (4)0.0247 (4)0.0516 (5)0.0684 (6)0.0626 (6) -0.0193 (4)0.0188 (4)0.0540 (5)0.0901 (7)0.0412 (4) -0.0031 (5)0.0252 (4)0.0517 (5)0.0687 (6)0.0546 (5) -0.0196 (4)0.0184 (4)0.0447 (5)0.0622 (5)0.0588 (5)0.0063 (4)0.0210 (4)0.0447 (5)0.0622 (5)0.0540 (5)0.0130 (4)0.0217 (4)0.106 (6)0.134 (7)0.054 (4)0.010 (6)0.013 (4)0.175 (11)0.107 (8)0.209 (13) -0.005 (7)0.123 (10)0.151 (9)0.206 (11)0.043 (4)0.017 (8)0.016 (5)0.035 (3)0.056 (4)0.040 (3)0.003 (3)0.011 (3)0.038 (4)0.070 (5)0.032 (3)0.001 (3)0.013 (3)0.059 (6)0.056 (6)0.094 (8) -0.003 (5)0.030 (5)0.031 (4)0.059 (5)0.059 (5) -0.001 (4)0.016 (4)0.032 (4)0.049 (4)0.045 (4)0.007 (4)0.017 (4)0.046 (5)0.065 (6)0.042 (4)0.007 (4)0.017 (4)0.054 (6)0.071 (7)0.070 (6)0.013 (5)0.030 (5)

C6	0.065 (6)	0.047 (5)	0.103 (8)	0.003 (4)	0.049 (6)	0.001 (5)
C8	0.027 (4)	0.061 (5)	0.036 (4)	0.002 (3)	0.015 (3)	0.001 (3)
C7	0.049 (5)	0.061 (5)	0.065 (6)	-0.005(4)	0.032 (4)	-0.015(5)
C9	0.036 (4)	0.060 (5)	0.043 (4)	-0.001(4)	0.017(3)	0.007 (4)
C10	0.063 (6)	0.099 (8)	0.060 (6)	0.009 (6)	0.023 (5)	0.037 (6)
	(0)		(0)			
Geometric param	neters (Å, °)					
Sn1—Br1		2.4405 (12)	C1—	-H1A		0.9800
Sn1—Br3		2.4603 (12)	C1—	-H1B		0.9800
Sn1—Br4		2.6534 (11)	C1—	-H1C		0.9800
Sn1—Br6		2.6570 (12)	C2—	-C9		1.461 (12)
Sn1—Br5		2.7026 (12)	С3—	-C4		1.391 (11)
Sn1—Br2		2.7114 (11)	С3—	-C8		1.447 (11)
O1W—H1W1		0.86000	C4—	-C5		1.368 (13)
O1W—H1W2		0.87000	C4—	-H4		0.9500
O2W—H2W1		0.84000	С5—	-C6		1.418 (14)
O2W—H2W2		0.87000	С5—	-H5		0.9500
O3W—H3W1		0.90000	С6—	-C7		1.395 (14)
O3W—H3W2		0.86000	С6—	-H6		0.9500
N1—C2		1.330 (10)	C8—	-C7		1.403 (12)
N1—C3		1.375 (10)	С7—	-H7		0.9500
N1—H1N		0.8600	С9—	-C10		1.500 (11)
N2—C9		1.308 (11)	C10-	-H10A		0.9800
N2—C8		1.365 (10)	C10-	-H10B		0.9800
N2—H2N		0.8600	C10-	-H10C		0.9800
C1—C2		1.483 (13)				
Br1—Sn1—Br3		177.29 (4)	N1—	-С2—С9		118.9 (8)
Br1—Sn1—Br4		93.48 (4)	N1—	-C2—C1		117.1 (8)
Br3—Sn1—Br4		88.41 (4)	С9—	-C2C1		124.0 (8)
Br1—Sn1—Br6		86.37 (4)	N1—	-C3—C4		120.0 (8)
Br3—Sn1—Br6		95.38 (4)	N1—	-C3—C8		117.8 (7)
Br4—Sn1—Br6		95.87 (4)	C4—	-C3C8		122.2 (7)
Br1—Sn1—Br5		92.93 (3)	С5—	-C4—C3		115.9 (8)
Br3—Sn1—Br5		85.26 (4)	С5—	-C4—H4		122.0
Br4—Sn1—Br5		85.87 (4)	С3—	-C4—H4		122.0
Br6—Sn1—Br5		178.17 (3)	C4—	-C5—C6		122.7 (9)
Br1—Sn1—Br2		87.41 (4)	C4—	-С5—Н5		118.6
Br3—Sn1—Br2		90.69 (4)	С6—	-С5—Н5		118.6
Br4—Sn1—Br2		179.08 (4)	С7—	-C6—C5		122.8 (9)
Br6—Sn1—Br2		84.41 (4)	С7—	-С6—Н6		118.6
Br5—Sn1—Br2		93.86 (4)	С5—	-С6—Н6		118.6
H1W1—O1W—H	I1W2	106.70	N2—	-C8—C7		120.5 (8)
H2W1—O2W—H	I2W2	108.30	N2—	-C8—C3		118.3 (7)
H3W1—O3W—H	I3W2	104.40	С7—	-C8C3		121.1 (8)
C2—N1—C3		122.6 (7)	С6—	-C7C8		115.2 (9)
C2—N1—H1N		118.7	С6—	-С7—Н7		122.4
C3—N1—H1N		118.7	C8—	-С7—Н7		122.4
C9—N2—C8		123.5 (7)	N2—	-C9—C2		118.9 (7)

C9—N2—H2N	118.2	N2-C9-C10	118.8 (8)
C8—N2—H2N	118.2	C2—C9—C10	122.4 (8)
C2—C1—H1A	109.5	C9-C10-H10A	109.5
C2—C1—H1B	109.5	С9—С10—Н10В	109.5
H1A—C1—H1B	109.5	H10A—C10—H10B	109.5
C2—C1—H1C	109.5	С9—С10—Н10С	109.5
H1A—C1—H1C	109.5	H10A—C10—H10C	109.5
H1B—C1—H1C	109.5	H10B-C10-H10C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O1W—H1W1···O2W	0.86	1.78	2.640 (14)	170.00
O1W—H1W2···Br3 ⁱ	0.87	2.79	3.348 (9)	123.1 (5)
O2W—H2W1···Br2 ⁱⁱ	0.84	2.57	3.401 (12)	167.4 (7)
O2W—H2W2···Br3 ⁱⁱ	0.87	2.83	3.482 (11)	132.9 (7)
O3W—H3W2···Br1	0.86	2.83	3.349 (11)	120.00
N1—H1N···O1W	0.86	1.82	2.672 (10)	172
N2—H2N···O3W ⁱⁱⁱ	0.86	1.81	2.660 (11)	172

Symmetry codes: (i) x-1, -y+3/2, z+1/2; (ii) -x+2, y-1/2, -z+1/2; (iii) x, -y+3/2, z+1/2.

Fig. 1

Fig. 4

